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Using the theory of the strain dependence of elastomer loss modulus in the transition zone, it was shown that 
measurement of this dependence in the non-Gaussian strain region allows more reliable conclusions about the 
network structure to be drawn than is possible from the equilibrium stress-strain dependence. On the basis of 
the experimental data obtained by Meinecke, the structural characteristics related to the length and coiling 
ratio distributions, Nh2/NL a and Nh4/~l~, were determined for two elastomers, where N is the number of 
links in an elastically active chain, L is its contour length, h is the end-to-end distance and the bars mean 
averaging over the network. The supposition made by Mullins and Morris, namely that the equilibrium 
stress-strain dependence in both Gaussian and non-Gaussian regions can be described by the phantom-chain 
theory with addition to the Mooney-Rivlin term, is thus verified. 
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Q~) component  of the matrix transforming into 
collective modes 

q~) collective mode 
q~ normal mode 
q a set of slow coordinates 
R~ radius vector of a bead 
R! °) equilibrium value of Ri 
r! v) radius vector of the ith atom in the vth chain 
T period, absolute temperature 
T~a components of the tensor of dissipative momentum 

flux 
t time 
U potential of a spring 
V volume of a sample 
W average power dissipated during a period 
We conditional equilibrium distribution 
a,fl numerical coefficients 
~=~ Kronecker delta 
( structural parameter  of a network 
0 angle to the z-axis 
2 extension ratio 
v number of the chain in a network 
p~ deviation of the radius vector of a bead from its 

equilibrium position 
T O relaxation time of local motion 
rk relaxation time of the kth mode 
~b effective potential 
o~ circular frequency 
a true stress 

I N T R O D U C T I O N  

In a series of experiments 1-5 it was found that, if a small 
oscillating strain is superimposed on an elastomer 
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extended 2 times, the loss modulus increases with 2. This 
point, however, needs to be clarified, since the loss 
modulus at finite strains is not defined uniquely. 

Let L(t) be the length of a sample at time t, so that 

T 

L=(1/T)f L(t)dt 
0 

is the length averaged over the period of the oscillating 
strain. Then 

(L(t) - L)/L = e cos tot 

(to = 2n/T) 

(1) 

If we define the extension ratio as 2 = L/Lo, where L o is the 
non-extended length, then (1) becomes 

(2) L(t)/L o = 2(1 + e cos tot) 

expressed in terms of time correlation functions as 

oo 

E"(co) = kB---~f dt cos tot(( Tzz(t )Tzz(O)> + 21-( Txx(t)Txx(O)> 
0 

+ ½(Txx(t)Tyy(O)) - 2( T~=(t ) T~(0))) (4) 

where ka is the Boltzmann constant, T is the temperature, 
V is the sample volume, 

T,p=J,p-(J,a> (5) 

are the components of the tensor of dissipative 
momentum flux, the z axis is along the extension axis, and 
the angular brackets mean averaging over the canonical 
distribution at a given 2, the cylindrical symmetry of 
uniaxial extension being taken into account in (4). The 
tensor of the microscopic momentum flux can be written 
as 

The loss modulus is defined so that the average power 
dissipated during a period within a unit volume changes 
as the square of the oscillating strain amplitude: 

(4"=toE%2~2 (3) 

Under this definition, which is invariant to 2, the 
amplitude of the true viscous stress is proportional to e. In 
the experiments mentioned above, just the value E" of (3) 
increases with strain. 

The observed dependence of E" on 2 in the transition 
zone of frequencies was theoretically explained 7's to be 
due to finite extensibility of the chains. This theory is 
based upon a general relation between the viscous stress 
tensor and the time-dependent correlation functions of 
the dissipative momentum flux 9-1~, these functions 
having been calculated using the intuitive model of beads 
and springs. 

In the present work this model is substantiated for the 
transition zone. Also evidence is given that the E"-2 
dependence contains information on the network 
structure and on the properties of strongly extended 
polymer chains. The information obtained is to a great 
extent free of topological constraints, which are 
significant in the case of the a-2 dependence (a is the 
equilibrium stess) see, e.g., ref. 12). Therefore, comparison 
of the E"-2 and a-2 dependences allows the role of the 
constraints to be estimated for strongly extended 
elastomers. 

(6) 

where v is the number of the chain in a network consisting 
of N atoms, and p!') and r! ") are the momentum and the 
radius vector of the ith atom in the vth chain. (For short, 
any rigid group is here referred to as an atom.) Since the 
crosslinks consist of several atoms, they can be separated 
so that every atom belongs to a definite chain. Formula (6) 
can be shown to be valid for non-central and non-additive 
interactionsX a,~4. 

The calculations of the loss modulus in (4) can be 
essentially simplified if we restrict ourselves to rather low 
frequencies co,~ z o x, z o being the expectation time of a 
conformational transition (or the relaxation time of local 
motions in polymer chains). For time correlation of two 
functions of phase coordinates, A and B, which depend on 
both fast and slow variables, the following relation is valid 
for t>> Zo: 

( A (t)B(0)> ~- ( ( A > q(,)( B> ~(o)> (7) 

Here (A)q is the conditional average at given values of 
slow variables q. The condition of slowness means that 

l( A>q(~+~o)- < A>q(,)l <~ [<A>q(ol (8) 

Let us consider the spectral density 

THEORY 

In order to make the general theory 9-1x applicable to 
polymer systems, chemical bonds between rigid groups 
are to be simulated by proper non-additive and non- 
central potentials. Then the Hamiltonian H of the system 
includes both the usual van der Waals interactions and 
the potential energy of chemical bonds. In the references 
mentioned, the radius of the interatomic interaction was 
taken to be necessarily finite, though this condition is not 
applicable to potentials simulating chemical bonds. But, 
in fact, it is sufficient to use the condition that the 
correlation radius of atomic motions is finite. According 
to the theory 9-11 the loss modulus defined by (3) is 

oc 

I (to) = f dt exp(itot)( A(t )B(O)) 
0 

at to~zg  1. Then considering (7) and (8) we have 

T O oo 

I(to) ~ f dt(A(t)B(O)) + f dt exp(itot)((A)q(t)(B)q(o)) 

0 0 

Therefore, within the accuracy of an additive constant, the 
spectral density is the Fourier transform of the reduced 
time correlation function (7). 
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The slow variables are collective variables, which we 
define as 

N,,, N v - 1 

qg) = N~-' Z rl ~) q~) = 2 ~k,,',rW)t'I0+, _ rl, ~ 
i=I i=l 

Q~)~= (2/N,,)l/2sin(ikn/N,,) (k = 1, 2 . . . . .  N,, - 1) 
(9) 

As was shown when studying the relaxation properties 
of a series of analytically solvable models 1 5 - :  and of 
models simulated by the methods of molecular and 
Brownian dynamics (see, e.g., refs. 18 and 19), the 
relaxation times of collective variables (9) are longer the 
less is the k number. These relaxation times correspond to 
those in the Rouse model 2° at 1 ~< k ~ N~ (see also ref. 6). 
Hence we assume that all q~) with g = 0, 1 . . . . .  p ~ N~ are 
the only slow variables in the system, while all those with 
k > p and all momenta are fast variables. 

Following Doi and Okano 2~, averaging over fast 
variables is done by introducing a conditional 
distribution of fast variables for given slow variables 

W~(F/q') = Z -  lexp(-  H/ka T)b(q - qt)/Pe(q') 

where F is the point in the phase space of the system, the q 
vector with no index means all the set of q~), 

Z = f d F  exp(-  H/kB T)  

and 

Pe(q') = Z - IfdF exp( - H/kB T)6(q - qt) 

is the equilibrium distribution in the space of slow 
variables. Integrating J,# W~(F/q t) with due regard for the 
vanishing of We at boundaries of the phase space, we 
obtain 

where 

P .,) t~gp . NcpkBT 
= - Z  Y, (lO) 

v 0 = 0  "/O/~ 

4~ = - kB T In Pe(q') (11) 

is the effective potential and Nc is the number of chains in 
the network. 

The problem becomes further simplifed if we restrict 
ourselves to the transition zone of frequencies that 
correspond to semilocal motion, i.e. to the modes with 
1 ~ 9'~ Nv (see, e.g., ref. 6). The condition of semilocality 
becomes (N , , /Ne)~o~ .N,  provided that the average 
distance between entanglements is No<N, ,  So, we 
consider a limited time interval in which the relaxation 
connected with local motions g ~ Nv has already finished, 
while that related to the motions whose scale is 
commensurable with the whole chain 0 ~ (Nv/Ne) has not 
yet developed. The motions with 9>> (Nv/Ne) are not 
sensitive to topological constraints producing entangle- 
ments (tubes) (see, e.g., refs. 12 and 22). 

The other advantage of the transition zone is that 
relaxation of semilocal modes in long chains does not 
depend on the conditions of fixing the chain ends. Hence, 
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the semilocal motions of different chains are not 
correlated and the correlation function (4) can be 
represented as a sum of correlation functions of separate 
chains. In this case the semilocal modes are equivalent to 
the bead-spring model. 

In order to illustrate this fact, let us divide the chain into 
n subchains. For collective modes (9) with k ~ n we can 
write 

ip 

qk= ~ ~ Qk,(r,+,--r,)" ~ Qki, p(Ri+,--Ri) (12) 
i = 1  j =  i = l  

( i -  1 ) p + l  

here p = N/n, the index v being omitted for short. Then q~ 
can be expressed using the coordinates of the subchain 
ends Ri; also R~ can be expressed using qk by the inverse 
transform and can be also considered as slow variables. In 
this case, (10) coincides with the result by Doi and 
Okano 21 for ~ 3//. The additional diagional term on the 
right-hand side of (10), which can be considered as the 
pressure of N~p links, does not contribute to the 
dissipative momentum flux, owing to definition (5). The 
fact that semilocal motions are not sensitive to 
topological constraints is verified by experiments on 
scattering of neutrons in polymer melts. These 
experiments showed that the relaxation of motions whose 
scales are smaller than distances between entanglements 
are described by the Rouse model (see, e.g., ref. 23). 

All that said, the effective potential of a chain (11) can be 
written as 

4= ~ U(fR,+ 1 -Ri[) (13) 
i = 0  

There are also some other arguments showing that the 
bead-spring model can be used to calculate the loss 
modulus of an elastomer in the transition zone. In ref. 24 
we have modified the potential ~b so that the equilibrium 
a-2 dependence in the Gaussian region of extension is 
closer to the experimental dependence, this modification 
having been found to affect the loss modulus weakly. 
When entanglements were simulated by points capable of 
forming rather weak linkages, the processes of breakage 
and formation of entanglements proved to be of no 
importance in the transition zone 25. 

All these arguments concern free or weakly extended 
chains, but we believe that they are also valid for greater 
extensions for which the effects of limited extensibility of 
chains become essential, i.e. the springs in the model 
become nonlinear. 

The micro-Brownian motions of beads in extended 
chains are, in fact, the fluctuations around equilibrium 
positions R~ °~. Since strong fluctuations are hardly 
probable, the effective potential (13) can be expanded into 
powers of deviations from the equilibrium positions 
pi = R i - R !  °) restricted to the second-order terms. 

Here the normal modes 

n--t [2"~1/2. / k r r \ .  {ik~z\ 
sln rn)Sl" T)' '' (14) 

which correspond to the condition of fixed chain ends, are 
convenient to use. In the coordinate system where the 
chain ends are on the z axis 

n - 1  

~b--~bo +½ Z [C'q~2 +Ct(q~2 +q~ 2)] (15) 
k = I  
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where 4)o = ~b if all the beads are in their equilibrium 
positions, the 'elastic coefficients' C~ = U"(a), Ct = U'(a)/a, 

• -(% _ R ~ ° )  I U ~ l~i+ 1 • . 
In analogy with the non-Gaussian theory of rubber 

elasticity 26 we restrict ourselves to two non-Gaussian 
terms in the expansion of the effective potential U in 
powers of the coiling ratio h/L, h being the distance 
between the chain ends and L the contour length. So, 
remembering that h=  na (see (13)) 

U=½Cga2[1 +a(na/L) 2 +fl(na/L)*+...] (16) 

where C 8 = 3ksTn/( h2> is the known 'elastic coefficient' of 
a Gaussian subchain. The numerical factors ¢ and fl 
depend on the chain model; in particular, a=3 /10  and 
fl = 33/175 for a freely jointed chain. To calculate the time 
correlation functions of the reduced momentum flux (10), 
the transition probability G in the space of normal modes 
(14) must be known. The supposition of q~' being slow 
means that G must satisfy the diffusion equation. As 
Gotlib and Darinskii 27 have shown, the mobility of a 
chain may decrease with extension and become 
anisotropic because the fraction of gauche conformers 
decreases. 

According to (15), the diffusion equation is 

~as~ - =  k=la=ln--lE ~zkCgDg ksT~k2+C,~q~=(qk=G ) (17) 

here D= = DI, D~ = D r = Dt, C z =--- CI,  C x = Cy =-- Ct ,  Z k and Dg 
are respectively the relaxation time of the kth normal 
mode and the bead diffusion coefficient in a Gaussian 
chain. The reduced correlation functions of a chain can be 
calculated using (10), (15) and (17) in a standard way, 
provided the dependence of the diffusion constants on a is 
known. Using the model of freely jointed segments, which 
can flip in pairs around the axis passing through the 
points where segments are attached to the main chain, it 
was shown s that D= ~ C~ a. In this case the correlation 
times of normal modes ZRCgDg/C=D ~ do not depend on the 
chain extension. If a weak correlation of orientation in 
adjacent chains is included in the model, the relaxation 
times become shorter during extension. When the 
motions follow the mechanism of accumulation of weak 
vibrations, mobilities stay constant under extension 27. 
Therefore, to estimate how the changes in mobilities affect 
the loss modulus, two limiting cases must be considered, 
viz. a freely jointed chain whose relaxation times are 
constant and a chain with constant diffusion coefficients 
whose relaxation times decrease very strongly with 
extension. 

In order to obtain the correlation functions of a whole 
network it is necessary to transform from the chain 
coordinate system to the laboratory one and to know the 
orientation distribution function of the end-to-end 
vectors in a deformed network. Furthermore, it is 
necessary to know how the equilibrium positions of beads 
in strained and non-strained states are interconnected. 
For  our calculations we have taken the displacements 
from equilibrium positions R] °) to be affine, although this 
is not true for a non-Gaussian network 28. But out 
assumption is justified since we restrict ourselves to 
weakly non-Gaussian networks, which, as shown by 
Wang and Guth 26, are approximately affine. We must 
also mention here w o r k  29 '3°  in which the network 
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extension was simulated by the Monte Carlo method. As 
shown therein the average extension of chains is 
proportional to changes in the sample dimensions until 
the average coiling ratio is less than 0.8. 

Calculating the time correlation functions within the 
accuracy of the first two non-Gaussian terms using the 
above concepts we obtain the following expansions for the 
loss modulus in accordance with (4): 

(a) for the case of constant relaxation times 

E" (co.2)= E~'(co)[ 1 + ~(2(222 + 2-  ') 
(18) 

+ 8-~(*(8462" - 242 + 5642- 2) + . . . ]  

(b) for the case of the constant mobilities 

m 

E"(£o,2) = Eg(O.))[ 1 "{- ~-0(2 2 2 
(19) 

+ 7-o~oo(*(12752" - 3702 + 7122- z) + . . .  ] 

Here the network is supposed to be perfect, E~'(og) is the 
loss modulus in the model of Gaussian subchains, the 
values of a and fl in (16) are taken in accordance with the 
model of freely jointed segments, and the bar means 
averaging over the network: 

- -  1 N 
(2. =_~,~l(hv/Lv)2.(Nv/1~ ) 

N¢ 

When obtaining (19)we used the fact that E~'(co)~ co 1/2 
in the transition zone (see, e.g., ref. 6). The E"-2 
dependences for the two limiting cases of (18) and (19) 
proved to be close to one other. It means that during 
extension the mobilities change much more weakly than 
do elastic constants. Just the latter fact provides the 
growth of E" under extension. 

DISCUSSION 

As follows from (18) and (19), from the E"-2 dependences 
the moments (2, can be determined, which control the 
tension distribution of chains in non-deformed states. 
This distribution together with the distribution contour 
lengths characterizes the network structure. The same 
moments (2, are also present in the equilibrium 
dependence of true stress tr on 2 in the non-Gaussian 
region of deformations. If the coefficients of the effective 
potential (16) are taken from the model of freely jointed 
segments and under the conditions of affinity, the theory 
of phantom non-Gaussian chains 26 gives 

,~-- c ,  (,~2 _ 2 - '  )[ 1 + ~ ( (%2) (22  +-~2- ') + . . . ]  (20) 

where the elastic constant of the theory of Gaussian 
chains can be written as 

C 1 = NckBTNk(2/V (21) 

]Vk being the number of Kuhn segments in a chain 
consisting of N links. As mentioned in the Introduction 
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the theory of phantom chains disagrees with experiments 
because of steric interactions. But a satisfactory theory 
including this influence does not exist yet. On the 
contrary, as shown above, the relations (18) and (19) are 
not affected by topological constraints. The most doubtful 
point in the derivation of these relations is the assumption 
of affinity. One more factor that can make the assumption 
of affinity wrong is the slow motions within the network, 
this phenomenon not being clearly understood up to now. 
But the motions mentioned can result in slow fluctuations 
of equilibrium positions. To estimate the contribution of 
slow fluctuations, a simple example is considered in the 
Appendix. It is shown (see (A.3)) that the values of 
moments (2, vary slightly, but for sufficiently long chains 
this variation is negligible. 

For illustration we have considered the experimental 
data of Meinecke 2, though they hardly fit our conditions 
since they correspond to the low-frequency part of the 
transition zone just near the plateau boundary. Figure 1 
shows the E"-2 dependence for a vulcanizate of natural 
and styrene-butadiene rubbers. The values of the 
parameters obtained are: Eg'=0.36MPa, (2=0.11, 
(4=0.012 for SBR; and E~'=0.245MPa, (2=0.06, 
(4=0.0054 for NR. Describing the same experimental 
data by (19) we obtain E~=0.39MPa, (2=0.15, 
(4= 0.0023 for SBR. 

As mentioned above, the theory gives the loss modulus 
to an accuracy of an undetermined constant, which, in 
turn, may depend on strain. Therefore, to check the 
theory, measurements at various frequencies are needed. 

Rather a long time ago Mullins al and Morris 32 
attempted to describe the equilibrium tr-). dependence 
over a wide range of 2 including the non-Gaussian region. 
It was done in the same way as for the Gaussian region, i.e. 
by summing the expression for a taken from the phantom- 
chain theory with the Mooney-Rivlin term C2/2. Since in 
this work three fitting parameters were used, the results 
obtained therein seem not to be very reliable. In our case, 
having determined (2 and (4 we can restrict ourselves to 
only two parameters, C1 and C2, just as in the Gaussian 
range. This approach was used to describe the or-2 
dependences (since Meinecke 2 has measured those) and 
E"-2 dependences on the same samples. As shown in 
Figure 2, the experimental data are well described by the 
sum of (20) and the Mooney-Rivlin term. 

A 

el 

L 

1.0  
B 

• • 

0.5  

0 I I I 
2 3 4 

k 

Figure 1 Dependence of the loss modulus  E" on 2 as calculated using 
(18): O ,  F-l, experimental data of Meinecke 2; curve A, NR, T = - 26°C; 
curve B, SBR, T =  25°C, frequency 1 Hz 
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Figure 2 Dependence of the reduced strain a*=a/(2z-2 -1) on 2 -1 
plotted according to (20): curve A, NR, C1 =0.28 MPa, C2 =0.21 MPa;  
curve B, SBR, C1 = 0.25 MPa,  C2 = 0.39 MPa;  O,/-q, experimental data 
of Meinecke 2 

Therefore, in the region of large strains, the theory of 
phantom chains is much more precise than in the 
Gaussian region. This is due to the fact that at large strains 
the variations of chain entropy induced by internal 
interactions are much greater than those connected with 
steric interactions of chains. In this connection it is worth 
mentioning the comment made by the late I. M. Lifshits 
that an exact theory of rubber elasticity will originate 
from considering the regions of ultimate extensions. 

CONCLUSION 

A new method of studying network structure can stem 
from the measurements of deformational dependence of 
the loss modulus. The data obtained by this method can 
also be useful in developing the theory of rubber elasticity. 
However, a series of preliminary studies must be done. It is 
necessary to find out at what extension the concept of 
semilocal modes remains valid and the model of beads 
and nonlinear springs is applicable. This can be done 
using the method of Brownian dynamics. Also the 
orientations and coiling ratio distributions of chains in 
strongly extended networks must be calculated. As 
mentioned above, the latter problem can be solved within 
the framework of the phantom-chain theory. Certainly we 
also need measurements of E"-2 dependences in 
elastomers of various network structures over a wide 
range of frequencies with simultaneous measurements of 
a-2 dependences and birefringences. 

APPENDIX 

Let us consider two polymer chains with ends fixed at 
points A and C while point B can fluctuate (see Fi#ure 3). 
The motion of this point is slower than micro-Brownian 
motions of chains AB and BC. During the characteristic 
time of those motions the point B scarcely moves from its 
position, and hence it may be considered to be fixed. Let 
us take B to be fixed so that the angle between hi and h is 0. 
As an example we take the correlation function 
(T~=(t)T~=(0)) of the chain AB, which was calculated in 
refs. 7 and 8. In the coordinate system whose z-axis goes 
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B 

h a 

Figure 3 Slow fluctuation of the middle point in a chain 

t h rough  the poin ts  A a n d  C, this funct ion for a chain  wi th  
cons tan t  re laxa t ion  t imes is 

( Tzz(t)T,=(O)) = Ka(t)[1 + 12~(htJL) 2 

+ 40 5fl - 7~2)(hl z/L)* (A. 1) 

+ 12(3fl-2~Z)(h~x + h2y)h2JL 4 + . . . ]  

Here it is t aken  into  account  tha t  h t ,  = h~ cos 0, Kg(t) is the  
cor re la t ion  function of  a Gauss i an  chain,  ~ = 0 . 3  and  
f l=33/175 .  

W e  in t roduce  the devia t ion  of  h t f rom the equi l ibr ium 
value ho:h 1 = h o + A h t ,  h o = h k .  By ana logy  with  (15) we 
expand  the effective poten t ia l  energy of  the system 
involved in powers  of  devia t ions  up to the second-order  
terms 

2 
c~ h +-~ ~, [C, hAh~.+Co,(Ah2 +Ah2,)] (A.2) ~h = 0 1 

i=1 

Here  ~bh ° is the value of ~bh at  equi l ibr ium,  
C ~ =  U'(ho), Cth=U'(ho)/ho and  U(ho) is the effective 
potent ia l  of in te rac t ion  of poin ts  A, B and  B, C at  
equi l ibr ium for which we take  the dependence  (16). 

Calcu la t ing  the momen t s  Ah~ in (A.1) under  the  
a p p r o x i m a t i o n s  assumed,  we ob ta in  

(T=,(t)Tz,(O)) = Kg(t)[F t (Nk) +~(ho/L)2F2(Nk)  

+ ~ (ho/L) 'F 3 (Nk) + . . . ]  

where 

F 1 (N k ) = 1 + 1.2Nk- 1 + 3.9N k 2 + . . .  

F2(Nk)= I + 5 .1Nk l  -- 3 .6Nk2 + . . .  (A.3) 

Fa(Nk)= 1 - 3 . 8 N k  1 + 1.8Nk 2 - - . . .  

Here  N k is the  number  of segments  in the  chain.  If  we 
assume tha t  the po in t  B is fixed in its most  p robab le  
posi t ion,  all  F i  are  unity. Therefore,  the con t r ibu t ion  of  
f luctuat ions  of the poin t  B decreases with increasing N k 
and  m a y  be neglected for sufficiently long chains.  
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